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Bak-Sneppen model near zero dimension
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We consider the Bak-Sneppen model near zero dimension, where the avalanche exjp®olse to 1 and
the exponentg. and o are close to 0. We demonstrate that 1= — oc=exp{—u 1—y+---} in this limit,
wherevy is Euler's constant. The avalanche hierarchy equation is rewritten in a form that makes it possible to
find the relation between the critical exponentsind n with high accuracy. We obtain precise values of the
critical exponents for the one and two-dimensional Bak-Sneppen model and for the one-dimensional aniso-
tropic Bak-Sneppen model.

PACS numbgs): 05.40:-a, 64.60.Fr, 05.65:b, 87.10+e

Perhaps the most simply formulated model showing avalations which enable us find the singular relation between the
lanche behavior is the Bak-Sneppen mofket7]: “What  critical exponents near zero dimension, and obtain values of
could be simpler than replacing some random numbers witithe exponents at integer dimensions. Traditionally, one re-
some other random numbers?2]. Nevertheless, the exact lates the exponentsandu [11,8] (see the definition of these
solution of the Bak-Sneppen model is unknown even in onexponents beloy The total curver(u), with particular
dimension. The value of the most fundamental quantity, i.e.points for the integer dimensions, and the areas of applica-
of the upper critical dimension, is also still under discussionbility of the approaches of Refl1] and ourselves are de-
(8,9]. picted in Fig. 1.

The formulation of the model is short indeed. A random  For the distributionP(f)=e~f, f>0 [13], the avalanche
numberf; from some distributiofP(f) is placed at each site hierarchy equation is of the foriri0]

i of a lattice. One simultaneously replaces the smallest num-

ber f,,;, of these, and the random numbers at its nearest aP(s,f) st
neighbor sites, by new random numbers from the distribution —f z t*P(t,f)P(s—t,f)—s*P(s,f). (1)
P(f), and afterwards the process is repeated. =1

Avalanches in the Bak-Sneppen model are defined in the . ) ) )
following way. Thef avalanche is defined as the sequence of Here, in the scaling regiors gives the average number
steps at whicH ,;,, remains smaller than the given parameterOf distinct sites updated during an avalanche of the sjze
f. (One may find a more detailed definition in RE3].)

A very significant step toward understanding the nature of 15
the avalanches in this model was made in H&0] by
Maslov, who introduced the so called avalanche hierarchy
equation for the distributiorP(s,f) of f-avalanche sizes
(i.e., of temporal durations From thisexactequation, one
may obtain additional relation between the critical exponents 1.3 -
of the model. Unfortunately, an exact solution of the equa- e 2.
tion is known only for the mean field situation. Two first 1.2 12/ -
terms of the expansion from the mean field solution, i.e. from 2
the higher critical dimension, were calculated in Réfl].
The precision of the results obtained by direct numerical in-
tegration of the avalanche hierarchy equation in its original =
form [1Q] is or_1|y comparable with the precision of the Monte 0 0.2 0.4 0.6 0.8 1
Carlo simulationg3,12].

There is another way to obtain analytical results. It seems n
natural to start from the lower critical dimensi_on, which i_s FIG. 1. The exponent vs x calculated from Eq(10) (also see
e.qu.al to zero for the Bak-Sneppen mo.del, to find somethlngaefs.[ll@. The value of the exponent depends on the dimen-
similar to thg well known _Zre expansion. Here from .the siond of the systemu(d=0)=0, u=1, at the upper critical di-
avalanche hierarchy equation we derive some convenient rgsension, i.e., at 4, as found in Ré8]. The dashed line is obtained

from Eq.(17), i.e., by an expansion from the lower critical dimen-
sion; the dash-dotted line is the expansidd] from the upper

1.4+ -

1.1 '_' 1 :” 3
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wherex=d/Ds, dis the dimension of the lattice, aid}; is ~ Hereh’(x)=dh(x)/dx. . _
the avalanche fractal dimensif8]. The physical meaning of !N Ref. [11], Eq. (7) was used to obtain the expansion
the equation describing the hierarchical nature of avalanchdéom the mean field solutiof5-7], but this seems to be
in the Bak-Sneppen model is the following. The distributioninconvenient. Let us show that one may transfer it to a purely
P(s,f) changes whilé grows, for two reasons. First, two mtegrgl form. The following lines demonstrate how that in-
consecutive avalanches of sizand s—t contribute to the tegration may be done:
avalanche of sizs (the second avalanche starts from one of
the sites changed during the first avalanche, which gives the
factor t* in the sun). Second, some avalanches of size T(1— )
merge into a larger avalanche.

For the problem under consideration, the exponent
which is equal to O at the lower critical dimension and equal
to 1 at the upper critical dimensiogimulations in[8] and
[9] gave different values for itgd,.=8 and 4, correspond-
ingly), is the given parameter. All other exponents are related _ fl dz

dlnh(x)_fl dz
dx Jo(1-z¥)n

dh(xz) wu—o
XZM - Th(XZ)

(XZ)(M—O')/O'+1

to u by Eqg.(1). Below the threshold, (i.e. in the symmetric 0 (1— V)~
phase the solution of Eq(1) has the following scaling form:
P(s,f)=s""F(s"(f.— ). @ Xdoxg @ 7 h(xa)]

Equation (1) resembles nonlinear differential equations L dy
with a peaking regimgl4]. For such equations, it is possible :X(M—U)/o+1j Ap—o)o+1

to find both exponents included in E@). 0 (1—zo)m
In Ref. [11], it was proposed to search for the Laplace 1 d
transform of the distributioP(s, f): = d_x[x—(,L—o)/az—(ﬂ—o)/ah(xz)]
p(a/’f)zszl P(s,fle”. 3 :X(M—U)/U-%—lix—(l’v—tf)/a
dx
Then Eq.(1) gives 1 h(x2)
1 aplaf) < % fo dz(l ZVoyr ©
a, —
— — M~ asS
Tptan af & Pehse
ap(a,f) Applying [ dx to the first and last lines of E@8), and then
=(—-1Hr—mr integrating by part§one may choost(x=0)=1 [11]], we
datt obtain
1 @ J +t,f
.t f drp-w Pt
I'(1-u)Jo da 1 dz
I'(1—w)Inh(x =f P —
@ (1=w)Inh(x) 0 (1— 20y
whered*/da* denotes the fractional partial derivative (s w—o X
certainly a noninteger and the last expression is its integral X|Xh(xz)=| ——+1 f duh(uz) |,
representation. The scaling relation for the solution of @j. 0
is 9
-1 fc_f . . . . .
p(a,f)=1—a” *h — . (5) and finally we obtain the equation for the scaling function
a h(x) in the most convenient form

Inserting Eq.(5) into Eq. (4), one obtains the usual relation

between the critical exponents,
1 x dy
h(x)=ex

F(1=w)Jo[1—(y/x)Y1m

=14+ pu—o, (6)

and the following integral-differential equation for the scal-
ing functionh(x): X

] (10

1
)22 dzria)

oo YO ) | |
I(1—p)x :J dy ) [if one does not demank(0)=1, h(x) in the left parts of
h(x) Jo [1— (y/x)Y]~ Egs.(9) and(10) is h(x)/h(0)].
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The asymptotic form oh(x) for largex follows from the pu—o &1 X n
expansion of Eq(3) in small «. Below the thresholdh(x) Inh(x)=——— —|(—> (16
has to be o p=annt\T(1—p)
h(x)=xt=o-Yoe ox Yot ox 204 ...) Thus, for smallu, the solutiorh(x) behaves in the following

' (11  Wway. For low enouglx, the solution very slowly decreases
from the valueh(0)=1, and, in some crossover region

This particular asymptotic behavior fixes the solution of Eq.~1/u, it reaches the asymptotic power téitg. (11)]. We
(10) and the value ofr for any givenu. Substituting Eq. have to stress that three last limit equalities may be justified
(11) into Eq. (7), Eq. (9), or Eqg.(10), one obtains the sum only for smallx, and that the omitted terms in E¢L4) do
rule contribute to the power-law tail. Nevertheless, one may try to
estimateos(u) for small x by inserting Eqs(15) and (16)
into the sum rulg12). The solution of the first of the equa-
tions obtained in such a way ig—o=exp—u -2y
+0O(u)}, wherey=0.572 ... isEuler's constant, and the
Note that if h(x,u,o) is a solution of Eq.(10), then solution of the second one is of the form
ch(cx,u,0) is also a solution for any constaat _

Equations(10) and (12) are the set of equations that lead p—o=1—l=exp{—p "—y+O(un)}. 17
Eiz;hinzcﬂgfefgl?gﬁ?rv%ﬁ’g s)e?ﬁg gé# d)i'titl)ﬂséiatc:]eot/ali?é 0fThus the dependeljce is nonanalyti(_:al, but even thg sec_ond
the ;axponent of the asymptote term of the expansion cannot be defined by such estimation.

’ In fact we failed to obtain the value of the constant ana-
(u—0o)—1 lytically. Nevertheless, Eqg9.10) and (12) are very conve-
[xh"(x)/h(X)](X—®)= ———. (13 nient for numerics, since iterations of EGLO) converge.
o [One may start, for instance, from functiofi5) or (16).]
Y\/e checked the validity of relatiofil7) for small w. The

Hence the problem is reduced to the eigenvalue problem fo X . : .
the nonlinegr equatiofLe]. ¢ P value of the constant in Eq17) obtained in such a way is

: 0.57715), i.e., it is indeed Euler’s constant.
Let us study the solution of the system for small The o ’ . .
expansion of the solution of EG10) in x looks like Solving Eq.(10) with the constraint12) or (13), and the

initial condition, one may easily obtaim(x) and 7(u) for
any givenu. The values of the exponept are known from
simulation at integer dimensions with much higher precision
than the values of, because of the better available statistics
1u [3,12]. Therefore, we can essentially improve the precision
> ;) B(20,1- ) of the known value ofr. For the one-dimension&lD) Bak-
Sneppen model, we obtair=1.0637(5)0.4(uw—0.4114),
i 1 o where £ =0.4114(2) is the value obtained from the Monte
1= o B(o,1-p) 2 1- o Carlo simulation[12]. For the 2D Bak-Sneppen model, we
obtain 7=1.229(1}+0.77(«—0.685), whereu=0.685(5)
1p is the value obtained in Ref12]. (The last relations may be
24 B(20,1-4) used to obtain better values ofvhen more precise values of
the exponenfu will be available) Now the precision ofr
1 E ﬁ) coincides with that of.. Note that these values are below the
3o values ofr previously obtained from the simulation(1D)
=1.073(3) andr(2D)=1.245(10)[12], but are in accor-
dance with the less precise values found in Réfl] by
direct numerical solution of the avalance hierarchy equation
4 [Eg. (1)]. The value of the exponent of the 3D Bak-
__MmrTOo - _ _ Sneppen model =0.905[9]) may be obtained from an
B o nzl nB(U’l w)---Blno 1w expansion from a higher critical dimensi¢hl]. In Fig. 1,

fwdxh(x)zml“(l—,u). (12
0 I

-
g

+

sloraw i
A e

Inh(x)=
><B(a,1—,u)(1—

2
+

oX

“\Ti—p

XB(o,l-u)+|1

X

3
4.

oX
F(1-w)

X B(30,1—,u)(

N we show the curver(u) together with the points for the
oX ) . (14) integer dimensions and the low-asymptote[Eq. (17)], and
I'1—pw) ' the expansion from the upper critical dimens[dr].
Of course, relatiorf17) is valid only for u<<1. Neverthe-
We shall see that the quantity.(- o)/c is the smallest |ess, let us compare the value ofat . =0.4114 obtained
parameter of the problem near the lower critical dimensionfrom Eq. (17), (r=1.0494), with the calculated above
If one tends formallyu to O, the last line of Eq(14) tendsto  7(1D). One may see that these values are in qualitative

X

. ] agreement.
nhox=—*"2'% I'(1+nu) X 15 In the case of the 1D anisotropic Bak-Sneppen model
o =1 nn ril-pw))”’ (i.e., for the update of the extremal site and only one neigh-

bor, for instance, the right the exponentsy and u are
and afterwards to coupled by the additional relatian+ w =1 [15]. Hence one
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can find all the exponents of the problem. From Ed) we  nents of the Bak-Sneppen model near zero dimension. Using
obtained the valug.=0.57795). In Ref.[15], two different  the values of the exponent known from simulations, we
values of u were obtained;u=0.58 from Eq.(1), and u have in fact, found all other exponents of the Bak-Sneppen
=0.588 found in another way. The Monte Carlo simulationmodel in one and two dimensions with the same high preci-
made in Refs.[17] and [18] gave x#=0.60(1) and u sion. We also obtained the exponents of the anisotropic 1D
—0.593), correspondingly. Therefore, we had to check ourBak-Sneppen model. Nevertheless, one should note that the
result. For that we numerically solved B@) with the initial ~ M&in problem of obtaining the last independent critical ex-
conditionh(0)=1 and constraintL2) or (13). The resultis Ponent of the Bak-Sneppen model remains open.

n=0.577§5). Thus the valugu=0.578 seems to be more g N D. thanks PRAXIS XXI(Portugal for Research
reliable, but the question is still open. Grant No. PRAXIS XXI/BCC/16418/98. J.F.F.M. was par-

In summary, we have demonstrated that the simple transially supported by Project No. PRAXIS/2/2.1/FIS/299/94,
formation of the avalanche hierarchy equation made it conand Y.G.P. was partially supported by Project No. PRAXIS/
venient for analysis and numerics. We have obtained th@/2.1/FIS/302/94. We also thank M. C. Marques for reading
nontrivial singular relation 7—1=u—o=exp—u '~y  the manuscript, and A. V. Goltsev and A. N. Samukhin for
+---}, with Euler's constanty, between the scaling expo- many useful discussions.
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