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Bak-Sneppen model near zero dimension
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We consider the Bak-Sneppen model near zero dimension, where the avalanche exponentt is close to 1 and
the exponentsm ands are close to 0. We demonstrate thatt215m2s5exp$2m212g1•••% in this limit,
whereg is Euler’s constant. The avalanche hierarchy equation is rewritten in a form that makes it possible to
find the relation between the critical exponentss andm with high accuracy. We obtain precise values of the
critical exponents for the one and two-dimensional Bak-Sneppen model and for the one-dimensional aniso-
tropic Bak-Sneppen model.

PACS number~s!: 05.40.2a, 64.60.Fr, 05.65.1b, 87.10.1e
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Perhaps the most simply formulated model showing a
lanche behavior is the Bak-Sneppen model@1–7#: ‘‘What
could be simpler than replacing some random numbers w
some other random numbers?’’@2#. Nevertheless, the exac
solution of the Bak-Sneppen model is unknown even in o
dimension. The value of the most fundamental quantity, i
of the upper critical dimension, is also still under discuss
@8,9#.

The formulation of the model is short indeed. A rando
numberf i from some distributionP( f ) is placed at each site
i of a lattice. One simultaneously replaces the smallest n
ber f min of these, and the random numbers at its nea
neighbor sites, by new random numbers from the distribut
P( f ), and afterwards the process is repeated.

Avalanches in the Bak-Sneppen model are defined in
following way. Thef avalanche is defined as the sequence
steps at whichf min remains smaller than the given parame
f. ~One may find a more detailed definition in Ref.@3#.!

A very significant step toward understanding the nature
the avalanches in this model was made in Ref.@10# by
Maslov, who introduced the so called avalanche hierar
equation for the distributionP(s, f ) of f-avalanche sizess
~i.e., of temporal durations!. From thisexactequation, one
may obtain additional relation between the critical expone
of the model. Unfortunately, an exact solution of the eq
tion is known only for the mean field situation. Two fir
terms of the expansion from the mean field solution, i.e. fr
the higher critical dimension, were calculated in Ref.@11#.
The precision of the results obtained by direct numerical
tegration of the avalanche hierarchy equation in its origi
form @10# is only comparable with the precision of the Mon
Carlo simulations@3,12#.

There is another way to obtain analytical results. It see
natural to start from the lower critical dimension, which
equal to zero for the Bak-Sneppen model, to find someth
similar to the well known 21e expansion. Here from the
avalanche hierarchy equation we derive some convenien
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lations which enable us find the singular relation between
critical exponents near zero dimension, and obtain value
the exponents at integer dimensions. Traditionally, one
lates the exponentst andm @11,8# ~see the definition of these
exponents below!. The total curvet(m), with particular
points for the integer dimensions, and the areas of appl
bility of the approaches of Ref.@11# and ourselves are de
picted in Fig. 1.

For the distributionP( f )5e2 f , f .0 @13#, the avalanche
hierarchy equation is of the form@10#

]P~s, f !

] f
5(

t51

s21

tmP~ t, f !P~s2t, f !2smP~s, f !. ~1!

Here, in the scaling region,sm gives the average numbe
of distinct sites updated during an avalanche of the sizs,

FIG. 1. The exponentt vs m calculated from Eq.~10! ~also see
Refs.@11,8#!. The value of the exponentm depends on the dimen
sion d of the system.m(d50)50, m51, at the upper critical di-
mension, i.e., at 4, as found in Ref.@9#. The dashed line is obtaine
from Eq. ~17!, i.e., by an expansion from the lower critical dime
sion; the dash-dotted line is the expansion@11# from the upper
critical dimension. Points 1, 2, and 3 correspond to the B
Sneppen model in one, two, and three dimensions. Point 1a co
sponds to the one-dimensional anisotropic Bak-Sneppen mode
295 ©2000 The American Physical Society
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wherem5d/D f , d is the dimension of the lattice, andD f is
the avalanche fractal dimension@3#. The physical meaning o
the equation describing the hierarchical nature of avalanc
in the Bak-Sneppen model is the following. The distributi
P(s, f ) changes whilef grows, for two reasons. First, tw
consecutive avalanches of sizet and s2t contribute to the
avalanche of sizes ~the second avalanche starts from one
the sites changed during the first avalanche, which gives
factor tm in the sum!. Second, some avalanches of sizes
merge into a larger avalanche.

For the problem under consideration, the exponentm,
which is equal to 0 at the lower critical dimension and eq
to 1 at the upper critical dimension~simulations in@8# and
@9# gave different values for it,duc58 and 4, correspond
ingly!, is the given parameter. All other exponents are rela
to m by Eq.~1!. Below the thresholdf c ~i.e. in the symmetric
phase! the solution of Eq.~1! has the following scaling form

P~s, f !5s2tF„ss~ f c2 f !…. ~2!

Equation ~1! resembles nonlinear differential equatio
with a peaking regime@14#. For such equations, it is possib
to find both exponents included in Eq.~2!.

In Ref. @11#, it was proposed to search for the Lapla
transform of the distributionP(s, f ):

p~a, f !5(
s51

`

P~s, f !e2as. ~3!

Then Eq.~1! gives

2
1

12p~a, f !

]p~a, f !

] f
5(

s51

`

P~s, f !sme2as

5~21!m
]mp~a, f !

]am

52
1

G~12m!
E

0

`

dtt2m
]p~a1t, f !

]a
,

~4!

where]m/]am denotes the fractional partial derivative (m is
certainly a noninteger!, and the last expression is its integr
representation. The scaling relation for the solution of Eq.~4!
is

p~a, f !512at21hS f c2 f

as D . ~5!

Inserting Eq.~5! into Eq. ~4!, one obtains the usual relatio
between the critical exponents,

t511m2s, ~6!

and the following integral-differential equation for the sca
ing functionh(x):

G~12m!x
h8~x!

h~x!
5E

0

x

dy

yh8~y!2
m2s

s
h~y!

@12~y/x!1/s#m
. ~7!
es

f
he

l

d

Hereh8(x)[dh(x)/dx.
In Ref. @11#, Eq. ~7! was used to obtain the expansio

from the mean field solution@5–7#, but this seems to be
inconvenient. Let us show that one may transfer it to a pur
integral form. The following lines demonstrate how that i
tegration may be done:

G~12m!
d ln h~x!

dx
5E

0

1 dz

~12z1/s!m

3Fxz
dh~xz!

d~xz!
2

m2s

s
h~xz!G

5E
0

1 dz

~12z1/s!m
~xz!(m2s)/s11

3
d

d~xz!
@~xz!2(m2s)/sh~xz!#

5x(m2s)/s11E
0

1 dz

~12z1/s!m
z(m2s)/s11

3
1

z

d

dx
@x2(m2s)/sz2(m2s)/sh~xz!#

5x(m2s)/s11
d

dx
x2(m2s)/s

3E
0

1

dz
h~xz!

~12z1/s!m
. ~8!

Applying *0
x dx to the first and last lines of Eq.~8!, and then

integrating by parts@one may chooseh(x50)51 @11##, we
obtain

G~12m!ln h~x!5E
0

1 dz

~12z1/s!m

3Fxh~xz!2S m2s

s
11D E

0

x

duh~uz!G ,
~9!

and finally we obtain the equation for the scaling functi
h(x) in the most convenient form

h~x!5expH 1

G~12m!
E

0

x dy

@12~y/x!1/s#m

3Fh~y!2
m

s

1

yE0

y

dzh~z!G J ~10!

@if one does not demandh(0)51, h(x) in the left parts of
Eqs.~9! and ~10! is h(x)/h(0)#.
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The asymptotic form ofh(x) for largex follows from the
expansion of Eq.~3! in small a. Below the threshold,h(x)
has to be

h~x!>x(m2s)/s21/s~c01c1x21/s1c2x22/s1••• !.
~11!

This particular asymptotic behavior fixes the solution of E
~10! and the value ofs for any givenm. Substituting Eq.
~11! into Eq. ~7!, Eq. ~9!, or Eq. ~10!, one obtains the sum
rule

E
0

`

dxh~x!5
12~m2s!

m
G~12m!. ~12!

Note that if h(x,m,s) is a solution of Eq. ~10!, then
ch(cx,m,s) is also a solution for any constantc.

Equations~10! and~12! are the set of equations that lea
to the scaling functionh(x,m) and s(m). Instead of Eq.
~12!, one may equally well use the condition on the value
the exponent of the asymptote,

@xh8~x!/h~x!#~x→`!5
~m2s!21

s
. ~13!

Hence the problem is reduced to the eigenvalue problem
the nonlinear equation@16#.

Let us study the solution of the system for smallm. The
expansion of the solution of Eq.~10! in x looks like

ln h~x!5S 12
m

s DB~s,12m!S sx

G~12m! D1S 12
m

s D
3B~s,12m!S 12

1

2

m

s DB~2s,12m!

3S sx

G~12m! D
2

1S 12
m

s DB~s,12m!F1

2 S 12
m

s D
3B~s,12m!1S 12

1

2

m

s DB~2s,12m!G
3S 12

1

3

m

s D
3B~3s,12m!S sx

G~12m! D
3

1•••

52
m2s

s (
n51

`
1

n
B~s,12m!•••B~ns,12m!

3S sx

G~12m! D
n

1•••. ~14!

We shall see that the quantity (m2s)/s is the smallest
parameter of the problem near the lower critical dimensi
If one tends formallym to 0, the last line of Eq.~14! tends to

ln h~x!52
m2s

s (
n51

`
G~11nm!

nn! S x

G~12m! D
n

, ~15!

and afterwards to
.

f

or

.

ln h~x!52
m2s

s (
n51

`
1

nn! S x

G~12m! D
n

. ~16!

Thus, for smallm, the solutionh(x) behaves in the following
way. For low enoughx, the solution very slowly decrease
from the valueh(0)51, and, in some crossover regionx
;1/m, it reaches the asymptotic power tail@Eq. ~11!#. We
have to stress that three last limit equalities may be justi
only for small x, and that the omitted terms in Eq.~14! do
contribute to the power-law tail. Nevertheless, one may try
estimates(m) for small m by inserting Eqs.~15! and ~16!
into the sum rule~12!. The solution of the first of the equa
tions obtained in such a way ism2s5exp$2m2122g
1O(m)%, whereg50.5772 . . . is Euler’s constant, and the
solution of the second one is of the form

m2s5t215exp$2m212g1O~m!%. ~17!

Thus the dependence is nonanalytical, but even the sec
term of the expansion cannot be defined by such estimat

In fact we failed to obtain the value of the constant an
lytically. Nevertheless, Eqs.~10! and ~12! are very conve-
nient for numerics, since iterations of Eq.~10! converge.
@One may start, for instance, from functions~15! or ~16!.#
We checked the validity of relation~17! for small m. The
value of the constant in Eq.~17! obtained in such a way is
0.5771~5!, i.e., it is indeed Euler’s constant.

Solving Eq.~10! with the constraint~12! or ~13!, and the
initial condition, one may easily obtains(m) and t(m) for
any givenm. The values of the exponentm are known from
simulation at integer dimensions with much higher precis
than the values oft, because of the better available statist
@3,12#. Therefore, we can essentially improve the precis
of the known value oft. For the one-dimensional~1D! Bak-
Sneppen model, we obtaint51.0637(5)10.4(m20.4114),
wherem50.4114(2) is the value obtained from the Mon
Carlo simulation@12#. For the 2D Bak-Sneppen model, w
obtain t51.229(1)10.77(m20.685), wherem50.685(5)
is the value obtained in Ref.@12#. ~The last relations may be
used to obtain better values oft when more precise values o
the exponentm will be available.! Now the precision oft
coincides with that ofm. Note that these values are below th
values oft previously obtained from the simulation,t(1D)
51.073(3) andt(2D)51.245(10) @12#, but are in accor-
dance with the less precise values found in Ref.@11# by
direct numerical solution of the avalance hierarchy equat
@Eq. ~1!#. The value of the exponentt of the 3D Bak-
Sneppen model (m50.905 @9#! may be obtained from an
expansion from a higher critical dimension@11#. In Fig. 1,
we show the curvet(m) together with the points for the
integer dimensions and the low-m asymptote,@Eq. ~17!#, and
the expansion from the upper critical dimension@11#.

Of course, relation~17! is valid only form!1. Neverthe-
less, let us compare the value oft at m50.4114 obtained
from Eq. ~17!, (t51.0494), with the calculated abov
t(1D). One may see that these values are in qualita
agreement.

In the case of the 1D anisotropic Bak-Sneppen mo
~i.e., for the update of the extremal site and only one nei
bor, for instance, the right!, the exponentss and m are
coupled by the additional relations1m51 @15#. Hence one
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can find all the exponents of the problem. From Eq.~10! we
obtained the valuem50.5779(5). In Ref. @15#, two different
values ofm were obtained:m50.58 from Eq.~1!, and m
50.588 found in another way. The Monte Carlo simulati
made in Refs.@17# and @18# gave m50.60(1) and m
50.59(3), correspondingly. Therefore, we had to check o
result. For that we numerically solved Eq.~7! with the initial
conditionh(0)51 and constraint~12! or ~13!. The result is
m50.5778(5). Thus the valuem50.578 seems to be mor
reliable, but the question is still open.

In summary, we have demonstrated that the simple tra
formation of the avalanche hierarchy equation made it c
venient for analysis and numerics. We have obtained
nontrivial singular relation t215m2s5exp$2m212g
1•••%, with Euler’s constantg, between the scaling expo
T

v

r

s-
-
e

nents of the Bak-Sneppen model near zero dimension. U
the values of the exponentm known from simulations, we
have in fact, found all other exponents of the Bak-Snepp
model in one and two dimensions with the same high pre
sion. We also obtained the exponents of the anisotropic
Bak-Sneppen model. Nevertheless, one should note tha
main problem of obtaining the last independent critical e
ponent of the Bak-Sneppen model remains open.
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